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Any manual ~9/of Boolean locales in the strong sense, namely a subcategory of 
the opposite category ~Eoc of the category ~3o0I of complete Boolean algebras 
and complete Boolean homomorphisms satisfying not only conditions (3.1)- 
(3.10) of our previous paper [International Journal of Theoretical Physics, 32, 
1293 (1993b)], but also conditions (4.1)-(4.4) of that paper, is shown to be 
representable as the second-class orthomodular manual 9J/ta I of Boolean locales 
on an orthomodular poset .~. In this sense the study on manuals of Boolean 
locales in the strong sense is tantamount to the study on a special class of 
orthomodular posets, though our viewpoint is radically different from the 
conventional one in the traditional approach to orthomodular posers. Then the 
notion of a manual of Hilbert spaces or exactly what is called a manual of 
Hilbert locales is introduced, over which a variant of the celebrated Gelfand- 
Naimark-Segal theorem for a manual of Boolean locales in the strong sense is 
established. 

1. I N T R O D U C T I O N  

Some researchers in the foundations of quantum mechanics have made 
something of partial structures such as partial Boolean algebras, partial 
Hilbert spaces, partial semigroups, and so on. (Czelakowski, 1974, 1975, 
1978, 1979, 1981; Gudder, 1972, 1986; Kochen and Specker 1965a,b; Lock 
and Hardegree, 1985a,b; M~czyfiski, 1970). We agree completely with them 
that partiality lies at the core of quantum theory, but not until we put it within 
the modern framework of category theory does it become truly comprehen- 
sible. We believe that but for the modern apparatus of category theory, the 
study on partial structures would be doomed to remain parochial. 

In a previous paper (Nishimura, 1993b), sharing the same operational 
metaphysics with Foulis and Randall (1972; Randall and Foulis, 1973) we 
introduced the notion of a manual of Boolean algebras or exactly what was 
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called a manual of Boolean locales, which we believe will supersede partial 
Boolean algebras and the like. In Section 3 of this paper we will introduce 
the notion of a manual of Hilbert spaces or exactly what is to be called a 
manual of Hilbert locales, which we believe incarnate precisely what the 
advocates of partial Hilbert spaces have tried to express. In Section 4 we 
present a representation theorem of manuals of Boolean locales over 
manuals of Hilbert locales after the celebrated Gelfand-Naimark-Segal 
(GNS) theorem, which has given a canonical method for producing repre- 
sentations of operator algebras over Hilbert spaces, and which dates 
back to Gelfand and Naimark (1943) and Segal (1947). In Section 2 we 
discuss representations of manuals of Boolean locales over orthomodular 
posets. 

We hold firmly that the notion of a manual is more fundamental, more 
extensive, and far and away more pregnant than even its original proponents 
presumably envisaged. We feel that manuals stand in the same position to 
empirical mathematics as sheaves stand to constructive or intuitionistic 
mathematics, though empirical mathematics is just beginning to bloom. For 
the predominance of sheaves in model theory of constructive mathematics 
the reader is referred, e.g., to Trooelstra and van Dalen (1988, Chapters 14 
and 15 in particular). In subsequent papers Nishimura (n.d.-a,b) we will 
discuss manuals of operator algebras and commutative algebras. We expect 
that it will not be very long before the theory of manuals becomes as 
indispensable a tool in the arsenal of every working mathematician, ranging 
from algebraic geometry to analysis, as the theory of sheaves has already. 

We assume that the reader is well conversant with our previous paper 
(Nishimura, 1993b). A manual of Boolean locales is said to be a manual of 
Boolean locales in the strong sense if it satisfies conditions (4.1) -(4.4) besides 
obligatory conditions (3.1)-(3.10) of that paper. Hilbert spaces always 
imply complex Hilbert spaces. 

2. REPRESENTATION OF MANUALS OF BOOLEAN LOCALES 
OVER O R T H O M O D U L A R  POSETS 

The consideration in Example 3.7 of Nishimura (1993b) already 
contained the following. 

Proposition 2.1. Let ~ be an arbitrary orthomodular poset. Then the 
orthomodular poset ~(gJ/r.~l) associated with the second-class orthomodular 
manual 9Y/t.~ l of Boolean locales on ~ is naturally isomorphic .~. 

Given an orthomodular poser .~, an assignment to each x~.~ of a 
nonnegative real number o~(x) is said to be a state if it abides by the 
following conditions: 
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(2.1) co(l) = 1 
(2.2) For any family {x~, }~.~A of mutually orthogonal elements of 

such that sup~A x~ exists, 

CO(superb X~,)= ~ CO(Xx) 
),cA 

Given a manual ~ of Boolean locales, an assignment to each Boolean 
locale X in 9Y~ of a nonnegative real number co(X) is called a state if it 
satisfies the following conditions: 

(2.3) co(X) = 1 for any ~-maximal  Boolean locale X in ~d~. 
(2.4) For any family {X~};.~A of mutually ff~-orthogonal Boolean 

locales in 9Jl such that ~X~A O ~  X~ exists, 

~O(~A G ~ X;~) = ~ ~o(X~)~A 

It is easy to see by condition (3.9) of Nishimura (1993b) that if X ---~Y, 
then co(X) = co(Y). 

Note that our notion of a state on an orthomodular set or on a 
manual of Boolean locales assumes complete additivity from the beginning. 
It is easy to see the following: 

Proposition 2 2  For any orthomodular poser 2, the states on .~ are 
naturally in bijective correspondence with the states on the second-class 
manual 93~ M of Boolean locales on 2. 

Proof. Let co be a state on 2. It is easy to see that the assignment 
to each Boolean locale X in ~0~ M of ~(X) = co(Ix) with lx the unit element 
of the relative complete Boolean subalgebra ~(X) of .~ is a state on ~ a l "  
It is also easy to see that the assignment co ~-~ ~b gives a bijective correspon- 
dence between the states on ,~ and the states on 93/t~ ~. [] 

Recall that an orthomodular poset ~ is called regular if any finite 
family of mutually compatible elements in 3 is contained by a Boolean 
subalgebra of ~ (Ptfik and Pulmannovfi, 1991, Definition 1.3.26 and 
Proposition 1.3.29). We say that the orthomodular poset ~ is strongly 
regular if any family of mutually compatible elements in .~ is contained by 
a complete Boolean subalgebra of .~. Since a family of mutually orthogonal 
elements in ,~ is admittedly a family of mutually compatible elements in .~, 
strong regularity implies orthocompleteness. It is easy to see the following: 

Proposition 2,3. For any manual 9~ of Boolean locales in the strong 
sense, the orthomodular poset .~(93t) associated with 99/is strongly regular. 

We can see readily the following result. 
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Theorem 2.4. Let .~ be an arbitrary orthomodular poset. Then the 
second-class orthomodular manual 9Y/ta I of Boolean locales on .~ is a 
manual of Boolean locales in the strong sense iff .~ is strongly regular. 

The main representation theorem of this section goes as follows: 

Theorem 2.5. Any manual ~ of Boolean locales in the strong sense is 
naturally equivalent to the second-class orthomodular manual ~ta(~)l of 
Boolean locales on the orthomodular poset .~(~I.R) associated with 9Y/. 

Proof. It is not difficult to see that the assignment to each Boolean 
locale X in 9J~ of the relative complete Boolean subalgebra Bx depicted in 
Section 4 of Nishimura (1993b) induces an equivalence F: 9~ ~ 9F/ta(~)l. [] 

Corollary 2.6. Given a manual ~ of Boolean locales in the strong sense, 
the states on ~ are naturally in bijective correspondence with the states on 
the orthomodular poset ~(9~) associated with ~ .  

Proof. This follows readily from Proposition 2.2 and Theorem 2.5. [] 

The gist of the consideration in this section is that strongly regular 
orthomodular posets and manuals of Boolean locales in the strong sense are 
the same thing from different viewpoints. Nonetheless we believe that the 
transition from the conventional vantage point to our categorical one is 
considerably fertile. 

3. MANUALS OF HILBERT LOCALES 

We denote by .~il the category of Hilbert spaces and contractive linear 
transformations. That is to say, a linear transformation T: ~ ~ g "  of 
Hilbert spaces is a morphism of .~il iff II Z(x)il -< Ilxll for any x~J/f .  Note 
that isomorphisms in ~il are no other than unitary transformations of 
Hilbert spaces. A Hilbert space whose dimension is zero is called trivial. 
Recall that a linear transformation U: ~ --* o~ff of Hilbert spaces is called a 
partial isometry if it is isometric on the orthogonal complement of the null 
space {x~WlUx  = 0}. In this case the orthogonal complement of the null 
space of U is called the initial space of U and denoted by J (U) ,  while the 
range of U, which is also a closed linear subspace of ~f,  is called the final 
space of U and denoted by ~ (U) .  Note that every partial isometry resides 
in .~il. 

The opposite category of the category _~il is denoted by .~0r  Its 
objects are called Hilbert locales and denoted by X, Y . . . . .  while its 
morphisms are denoted by f, g , . . . .  Given an object X of .~2or the 
opposite X ~ of X, which is an object of .~il, is also denoted by ~'(X). 
Similarly, given a morphism f of .~oc ,  the opposite fop of f, which is a 
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morphism of .~iI, is denoted by ~ ( f ) .  A Hilbert locale X is called trivial if 
Yg(X) is trivial. A morphism f : Y ~ X  of .~s is called an embedding 
provided that ~ ( f )  is a partial isometry with ~ ( ~ ( f ) ) =  ~ (Y) .  Two 
embeddings IF." Y ~ X and f': Y' ~ X with the same codomain X are said to 
be equivalent if there exists an isomorphism g: Y ~ Y '  with f 'o  g = f. A 
morphism f: X ~ Y  is called a surjection provided that ~ ( f )  is a partial 
isometry with J ( ~ ( f ) )  ---- aCe(X). That is to say, a morphism f: X ~ Y is a 
surjection iff J/g(f) is an isometric transformation. Two surjections f: X ~ Y 
and f': X ~ Y '  with the same domain X are said to be equivalent if there 
exists an isomorphism g: Y ~ Y' with g o f = f'. A family 

{x~ f~ 
X},~e A 

of morphisms of the $5s with the same codomain is said to be a partial 
orthogonal sum diagram if fz is an embedding for each 2 cA and J ( J f ( fx ) ) ' s  
are mutually orthogonal, in which X is called a partial orthogonal sum of 
X)'s. The partial orthogonal sum diagram 

- +  X } ~  

is said to be an orthogonal sum diagram if ocg(X) is the orthogonal sum of 
J ( ~ ,  (L.))'s, in which X is called an orthogonal sum of X~'s. 

Let 9Jl be a small subcategory of the category ~ o c .  A diagram of 
~ o r  is said to be in ~ if all the objects and morphisms occurring in the 
diagram lie in ~ .  Hilbert locales X and Y in 9X are said to be 92~-orthogo- 
nal, in notation X _L~a Y, if there exists a partial orthogonal sum diagram 

f g 
X ~ Z - > Y  

of ~ o c  lying in 9X. A trivial Hilbert locale in 9X is said to be 9X-trivial if 
it is an initial object in ~ .  A Hilbert locale X in ~ is said to be 9X-maximal 
if for any Hilbert locale Y in 9X, X .• Y implies that Y is 9X-trivial. Hilbert 
locales X and Y in 9X are said to be 9X-equivalent, in notation X---~ Y, 
provided that for any Hilbert locale Z in 9X, X .• Z iff Y _l_~ Z. Obviously 
9Jl-equivalence is an equivalence relation among the Hilbert locales in 9X. 
We denote by [X]~ the equivalence class of X with respect to 9X-equiva- 
lence. An orthogonal sum diagram 

{x; r~ 
- ->  X};.~A 

of .~s lying in ~ is said to be an orthogonal ~Jl-sum diagram if for any 
partial orthogonal sum diagram 

f~ 
{X~ --> X'}~A 

of .~s162 lying in ~ the unique morphism g of ~s such that 9f'(g) is a 
partial isometry whose initial space is the orthogonal sum of J(AP(f~))'s 
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and gof~ =f~. for any 2~A belongs to 9J/, in which X is called an 
orthogonal 9)l-sum of X~'s and is denoted by ~;~A Q ~  X;. If A is a finite 
set, say, A = {1, 2}, then such a notation as X~ |  is preferred. Note 
that an 9X-trivial Hilbert locale, if it exists, can be regarded as an 
orthogonal ~ - s u m  of the empty family of Hilbert locales in 9X. An 
embedding f: X ~ Y in 9)/is called an 931-embedding if it can be completed 
to an orthogonal 9X-sum diagram 

f g 
X - , Y - , Z  

A surjection f: X - , X  in 9X is called an 9X-surjection if X - ~ Y .  Given 
Hilbert locales X and Y in 9X, if there exists an 93I-embedding f: X ~ Y  (an 
9X-surjection f: Y --, X, resp.), then we say that X is an 9X-sublocale (gX-quo- 
tient, resp.) of Y. 

A manual of  Hilbert locales is a small subcategory 9)l of the category 
.~s162 abiding by the following conditions: 

(3.1) For any pair (X, Y) of Hilbert locales in 9X, there exists at most 
a sole morphism from X to Y in 9X. 

(3.2) For any Hilbert locales X, Y in 9X, if there exists a morphism 
from X to Y in 9~X, then Y _L= Z implies X _1_~ Z for any Hilbert 
locale Z in 9)l. 

(3.3) There exists at least an 9X-trivial Hilbert locale in 931. 
(3.4) For any Hilbert locales X, Y in 9X with X J_~Y, there exists a 

Hilbert locale Z of the form Z = X (~ ~ Y. 
(3.5) For any Hilbert locale Z with Z = X G ~ Y  in 9X, X _l_~W and 

Y _L~ W imply Z _L~ W for any Hilbert locale W in 93l. 
(3.6) For any Hilbert locales X and Y in 9X, X --_mY iff there exists a 

Hilbert locale Z in 9X such that X _t_~ Z, Y _i_~ Z, and both of 
X ~ ~ Z and Y �9 ~ Z are 93~-maximal. 

(3.7) For any Hilbert locale X in ~Ji, if X _[_~X, then X is ~-trivial.  
(3.8) For any commutative diagram 

X f ~ Y  
g\ /h  

Z 

of .~s if f is in 9X and g is an 9X-surjection, then h is in 9X. 
(3.9) For any commutative diagram 

x_~fy 
g \ / ~ h  

Z 

of .~i~oc, if f is in 9J/and h is an 9X-embedding, then g is in ~1/. 
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Proposition 3.1. Any manual 932 of Hilbert locales abides by the 
following condition: 

(3.10) For any finite family {X~}~A of pairwise 9J/-orthogonal 
Hilbert locales in 9J/, ~;,~A |  exists. 

Proof. If the number n of elements in A is 0, then any 9~-trivial 
Hilbert locale whose existence is guaranteed by condition (3.3) fills the role 
of the desired orthogonal 9J/-sum. If  n = 1, the condition is trivially 
satisfied. If n = 2, the condition is no other than condition (3.4), which any 
manual of Hilbert locales should satisfy. If n > 3, say, if n = 4 and 
A = { 1, 2, 3, 4}, then by repeated application of conditions (3.4) and (3.5) 
we have ((X~ O ~ X 2 )  O ~ X 3 )  @gnX4, which is easily seen to play the role 
of the desired orthogonal 9X-sum of the family. II 

A manual ~0~ of Hilbert locales is called a-coherent if it satisfies the 
following condition besides the above ones: 

(3.10)~ For any sequence {Xi };~N of pairwise 9J/-orthogonal Hilbert 
locales in ~ ,  there exists a Hilbert locale Z such that Z = 

A manual 9J/ of Hilbert locales is said to be completely coherent if it 
satisfies the following condition: 

(3.10)~ For any infinite family {X~.}~A of pairwise 93/-orthogonal 
Hilbert locales in 93/, there exists a Hilbert locale Z in ~ with 
Z = Z~.~A @~X~.  

With such a bewilderingly abstract concept as our brand-new one of a 
manual of Hilbert locales just introduced, we should give the reader a feel 
for it by examples before subjecting it to theoretical scrutiny in earnest. A 
Hilbert space ~ gives two concomitant instances. Let us begin with the 
prosaic one. 

Example 3.2. Let 4 ~ be a Hilbert space. Our first-class manual !Ol~ of 
Hilbert locales on ~ has as objects the Hilbert locales X whose duals 
~r are closed linear subspaces of Jcd. We decree that a morphism 
f: Xi-o X2 of ~ o c  with .gV(X l) and ~r being closed linear subspaces of 
3r ~ passes for a morphism of ~0~ iff ~ ( X l )  _~ ~ (X2)  and ~ ( f )  is the 
orthogonal projection of ~ (X2)  onto ~(X~).  It is easy to see that Hilbert 
locales X~ and X2 in 9X~ are 9X~c-orthogonal iff the closed linear subspaces 
~ (X~)  and ~ (X2)  are orthogonal in A'L It is also easy to see that Hilbert 
locales X and Y in 9 ~  are 9X~-equivalent iff X = Y. A Hilbert locale X in 
9Yt~ is 9X~-maximal iff ~ ( X )  = Jet ~. It is easy to see that Hilbert locales XI 
and X2 are 9X~-equivalent iff Xl = X2. 
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The same Hilbert space a f  can give a far and away more flamboyant 
example, which one hopes may delight the appreciative reader. 

Example 3.3. Let ~r be a Hilbert space. Our second-class manual 
9Jlt~e j of Hilbert locales on ~ has as objects the Hilbert locales X whose 
duals J r (X)  are of the form ~1/o3~1, where A~1 and ~61 are closed linear 
subspaces of ~ with o~f] ~ ~ ,  and ~ / g ( ~  denotes the quotient Hilbert 
space. Note that ~l/At1 and the orthogonal complement A~ G g(~ of  g(l in 
gge are canonically isomorphic in .~iI. We decree that a morphism 
f: X! ~ X 2  of . ~ a c  with gel(X1)= Ael/Z(1 and ~vf(X2)= ~(fE/g(2 passes for 
a morphism of 9Jltjr I iff ~1 - A'~ )ffl - Af2, and A~(f) is the restriction to 
YF2 G o,Y2 of the orthogonal projection of  ~gf onto ~ I  Q JY'l, where gef~/At1 
(~(f2/~2, resp.) and ~1 G~f'l (A~2 O gr resp.) are canonically identified. 
Note that in this case, since g81 and A~ 2 O g(2 are orthogonal. ~f~(f) is also 
the restriction to ~2  ~gr of  the orthogonal projection of A~ onto g(~. 
Thus it is easy to see that the morphisms of 9Jlt~e J are indeed closed under 
composition. Note that a morphism f: X~ ~X2  of 9JIE~ 1 with g / f (Xl )=  
~ggl/~1 and ~r = ~2/Ar2 is an embedding iff A~I G o~1 _~ J/f2 @ g(~ and 
~,~f(f) is the orthogonal projection of ~f~2 O ~2  onto ~f~ ~ gel. Note also 
that the morphism f is a surjection iff ~(f2 O ~2  - ~fl O ~ and A~(f) is the 
identity on Jr2 ~ ~ff:- It is easy to see that Hilbert locales X~ and X 2 in fl)2t~r 1 
with ~ ( X l ) =  )ffi/Ar~ and Jf(X2) = ~2/o~ff2 are 9X~rl-orthogonal iff A~ 
and g/f~ are orthogonal, in which 

Y~(Xl ~ t ~  x2) = (gl �9 Y~2)/(Y~ |162 

It is also easy to see that they are 9Xtg l-equivalent iff A~ = A~:. A Hilbert 
locale X1 or 9XI~ 1 with Jg(X~)----- ~fl/)ff~ is 9~t~l-maximal iff g/t~ - i f .  

Now we give a method for constructing a new manual of  Hilbert 
locales from given ones, which will be used in the succeeding section. 

Example 3,4. Let~gJ/a };.~A be a family of manuals of  Hilbert locales. 
The orthogonal sum (~--)Z~A 93/;. of 9X;'S is a subcategory of ~ a c  whose 
objects are the dual objects ~)a~A X2 of t~)~ A g ( X z )  with Xx a Hilbert 
locale in ~91~ for each 2 sA  and whose morphisms are the dual morphisms 
~;.~A f~ of  @ ~ A  g/f (f;.) with f;. a morphism in ~Yt~ for each 2~A. It is easy 
to see that t~);.,A 9J/~ is indeed a manual of Hilbert locales. Note that 
~;.~AX~ and 0~)~,AY~ are (@);.~Ag~;~)-orthogonal iff X~ and V~ are 
9Ylg-orthogonal for all 2 ~A, in which 

Note also that @)x~/~ X~ is ( (~;.~A 9Xx)-maximal iff Xx is 9Jl;-maximal for 
all 2~A. It is easy to see that @)x~AX~ and @ ~ A Y ; .  are ( @ ) ~ A ~ a ) "  
equivalent iff X;. and Yx are 9X~-equivalent for all 2 ~A. 
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Now we are going to show that a manual 9J/of Hilbert locales, which 
shall be fixed for a while, gives rise to an orthocoherent associative 
orthoalgebra s = (Ls~, + ~ ,  0~, 1~), for which several ancillary results 
are in order. 

Proposition 3.5. All the 9J/-trivial Hilbert locales are mutually 991- 
equivalent. 

Proof. Let X, Y be ~0l-trivial Hilbert locales. Let Z be an arbitrary 
Hilbert locale in 9JL Since X is 9)/-trivial, there exists a morphism f: X ~ Y 
in 931 so that by condition (3.2), if Y _1_~ Z, then X _1_9~ Z. By changing the 
roles of X and Y, are also certain that if X _I_~Z, then Y _I_~Z. Hence 
X~-~Y.  [] 

We denote by 0~ their 9Jl-equivalence class. 

Proposition 3.6. Any 9J/-trivial Hilbert locale X is 9J/-orthogonal to 
any Hilbert locale Y in 9Jl. 

Proof. Since X is ~-trivial,  there exists a unique morphism f: X ~ X in 
93/. Thus the orthogonal sum diagram 

x L y ~ y  

lies in 93/, which shows that X ---~n Y. [] 

Proposition 3. Z There exists an 9J/-maximal Hilbert locale in 9Jl. 

Proof. By condition (3.3) there exists at least an 9)l-trivial Hilbert 
locale X in 9Jl. Since obviously X ___~X, the desired conclusion follows 
from condition (3.6). [] 

Proposition 3.8. Every Hilbert locale X in 0~ is 9J/-trivial. 

Proof. By Proposition 3.7 there exists an 9Jl-maximal Hilbert locale Y 
in 93l. By Proposition 3.6 we have X_I_~Y, which implies that X is 
9Y/-trivial. [] 

Proposition 3.9. All the 9Jl-maximal Hilbert locales in ~ are ~-equiv- 
alent. Every Hilbert locale of 9J~ which is 9Jl-equivalent to an 9J/-maximal 
Hilbert locale is also 9Jl-maximal. 

Proof. By Proposition 3.6 the ~-maximal  Hilbert locales of 9Jl can be 
characterized as the Hilbert locales of 93l to which exactly the 9J/-trivial 
Hilbert locales are ~01-orthogonal. [] 

We denote by 1~ the class of all the 9J/-maximal Hilbert locales in gJ/. 
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Proposition 3.10. For any Hilbert locales X, Y in 9J/with X • we 
have that for any Hilbert locale Z, X G ~  Y ,l,sa Z iff X ,l,sa Z and Y 2.sa Z. 

Proof. This follows forthwith from conditions (3.2) and (3.5). I 

Corollary 3.11. Whenever X, X', Y, and u  are Hilbert locales in 9Y~ 
such that X---saX' and Y---saY', then X_l_saY iff X'_I_~Y', in which any 
orthogonal 931-sum of X and Y is 9Y/-equivalent to any orthogonal 9Jl-sum 
of X' and Y'. 

Let Lsa = {[X]saIX is a Hilbert locale in 93/}. By the above corollary we 
can safely decree that [X]sa+~[Y]~ is defined iff X.• in which 
[X]sa +~[Y]sa is defined to be [XO~Y]~ .  Now we have to show the 
following. 

Theorem 3.12. The structure~Ae(9~) = (Lsa, +~ ,  0sa, lsa) thus defined 
is indeed an orthocoherent associative orthoalgebra. 

Proof. It suffices to note the following: 

(a) If X_l_saY, then X + s a y  ---~Y +saX. 
(b) If X • and X +saY .• then Y .• X • +saZ,  and 

(X GsaY) OsaZ ---~X ~sa (Y ~sa Z) 

(c) For any X in 9)l, there exists Y in 931 such that X _I_~Y and 
X ~ Y  is 931-maximal. If Y' satisfies the same property, then 
Y _saY'. 

(d) If X _I_~X, then X is ~-trivial. 
(e) If X _Lsa Y, X _l_sa Z, and Y .• Z, then X Gsa Y ,l,sa Z. 

Statements (a), (b), and (e) are obvious by Proposition 3.10. State- 
ment (c) follows from condition (3.6), while statement (d) follows from 
condition (3.7). I 

The associative orthoalgebra L~(93/) thus obtained is called the asso- 
ciative orthoalgebra associated with 9)l. It is well known that the notions of 
an orthocoherent orthoalgebra and an orthomodular poset are essentially 
equivalent concepts, for which the reader is referred to Gudder (1988, 
Corollary 3.4 and Theorem 3.5). The orthomodular poset ~(9Y/)= 
(L~, <~ ,  7~, 0~, 1~) corresponding to Z,e(gJ/) is called the orthomodular 
poset associated with 9)1. It is easy to see the following. 

Proposition 3.13. If a manual 9J/ of Hilbert locales is a-coherent 
(completely coherent, resp.), then the orthomodular poset -~(gY0 associated 
with 9Y~ is a-orthocomplete (orthocomplete, resp.). 
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The following proposition is also of some interest. 

Proposition 3.14. For any isomorphism f: X ~ Y of ~ o c  lying in 9J/, 
its inverse f-1 belongs to 93/iff f is an 9J/-embedding. 

Proof. To see the if part of the above statement, consider the follow- 
ing commutative diagram: 

Y Y 

X 

Then the desired conclusion follows from condition (3.9). To see the onlyqf 
part of the statement, let W be an 93/-trivial Hilbert locale in 9~. Then the 
diagram 

f 
X - ~ Y ~ W  

in 93/is an orthogonal 9Y~-sum diagram, since for any morphism g: X ~ Z of 
9~ with A'~(g) a partial isometry, we have the following commutative 
diagram in 9~: 

Z 

X , Y ~  W 
f 

By the same token we have the following dual result. 

Proposition 3.15. For any isomorphism f: X ~ Y  of . ~ o c  lying in ~9l, 
its inverse f-1 belongs to 93/iff f is an 9J/-surjection. 

Now we are in a position to discuss morphisms. In the next section 
we need to discuss representations of manuals of Boolean locales over 
manuals of Hilbert locales, so that whether each of 932 and 92 is a manual 
of Boolean locales or a manual of Hilbert locales, we ought to define the 

morphism F: 93/~ 9l, which is a functor satisfying the following notion of a 
conditions: 

(3.11) 
(3.12) 
(3.13) 

If X is ~-trivial,  then F(X) is 9l-trivial. 
If X is ~-maximal ,  then F(X) is 9l-maximal. 
If X-L~o~Y, then F(X)_L~F(Y) and F ( X @ ~ Y ) = F ( X ) ~  
F(Y). 

In the above and henceforth, if 9X is a manual of Boolean locales, then 
~-triviality and triviality are used interchangeably, though they are appar- 
ently distinct concepts in the case that 9X is a manual of Hilbert locales. 
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The morphism F is called a-orthocomplete (orthocomplete, resp.) if it 
satisfies the following condition (3.1 3)~ [(3.1 3) ~, resp.]: 

(3.13)~ If Y = ~ ~ N  @~Xi with {X;}i~N a sequence of pairwise 
9J/-orthogonal Boolean or Hilbert locales in 9~, then F(Y) = 
y,~N @~ F(X~). 

(3.13)o~ If Y = ~ A  ~)~X~ with {X~}~ A an infinite family of pair- 
wise 9J/-orthogonal Boolean or Hilbert locales in 9Y/, then F ( Y ) =  
~ A  | F(X~3. 

A morphism F: 9~ ~ 9l of manuals is said to be faithful if for any 
objects X, Y in 9J/, F(X) _1_~ F(Y) implies X •  Y. 

Proposition 3.16. If each of 9)1 and 91 is a manual of Boolean or 
Hilbert locales, and F: 93/~ 91 is a morphism of manuals, then X -~ ~ Y in 
9J/always implies F(X) --~F(Y) in 91. 

Proof. Since X---~Y by assumption, we have by condition (3.6) of 
this paper or by condition (3.9) of Nishimura (1993b) and object Z in 93/ 
such that X A_~ Z, Y l ~  Z, and both of X ~)~ Z and Y ~)~ Z are 991- 
maximal. This means by conditions (3.12) and (3.13) that F(X)_k~ F(Z), 
F(Y) _I_~F(Z), and both of F (X)@~F(Z)  and F(Y)|  are 91- 
maximal, which implies by condition (3.6) of this paper or by condition 
(3.9) of Nishimura (1993b) again that F(X) ~-~F(Y). [] 

By this proposition we can see easily that a morphism of manuals 
naturally induces a homomorphism of their associated associative orthoal- 
gebras and a morphism of their associated orthomodular posets. In partic- 
ular, if two manuals are isomorphic, their associated associative ortho- 
algebras as well as their associated orthomodular posets are isomorphic. 

In case both of 9J/and 91 are manuals of Hilbert locales, we need a 
stronger notion of a morphism in the next section. An isometric morphism 
from 9J/to 91 is a pair (F, z), where F: 93/~ 91 is a morphism of manuals of 
Hilbert locales and z is an assignment to each .object X in 9J/of a morphism 
~x: F(X)--->X of . ~ o c  abiding by the following conditions. 

(3.14) Tx is a surjection in . ~ o c  for each object X in 93/. 
(3.15) z is natural in the sense that for any morphism f: X ~ Y  in 93% 

the diagram 

X,  Tx F(X) 

f l  I f(f) 
y ~zv F(Y) 

is commutative. 
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The notion of  a state on a manual 9Jl of Hilbert locales is defined in 
the same way as that on a manual of Boolean locales was. Given a 
morphism F: 9)l ~ 91 of manuals, we say that a state co on 9J/and a state co' 
are F-related if for any object X in 99l, co'(F(X)) = co(X). A manual 9J/of  
Boolean or Hilbert locales is said to admit a full set o f  states if for any 
object X in 9)l which is not 93~-trivial, there exists a state co such that 
co(x) # 0. 

Given a manual 9~ of  Hilbert locales, a vector field on 9Y/ is an 
assignment • to each Hilbert locale X in ~ of a vector ~x in ~f~(X) such 
that for any orthogonal 9)l-sum diagram 

in ~I/, • = ~ ( f D ( •  A vector field ~ on 9J/ is called normalized if 
n • ]1 = 1 for any ~-maximal  Hilbert locale X in 9~. It is easy to see that 
given a normalized vector field • on 9A, the assignment to each Hilbert 
locale X in ~ of II~,xll 2 is a state, which is denoted by cox. Given an 
isometric orthocomplete morphism (F, z): 93/~ 9l of  manuals of Hilbert 
locales, a vector field • on ~ and a vector field y on 91 are said to be 
(F, z)-related provided that for any Hilbert locale X in 9)1, ~ ( r x ) ( •  = 
~/~-(x)- In this case, if • and y are normalized as well, then co~ and coy are 
F-related states. 

4. T H E  GNS T H E O R E M  

Let 9J~ be a manual of  Boolean locales in the strong sense, which shall 
be fixed throughout this section. Let co be a state on 93l. By Corollary 2.6 
the state co induces its corresponding state on the orthomodular poser 
2(931) associated with 99l, which we denote by aS. As we have seen in 
Section 4 of  Nishimura (1993b), the dual r of each Boolean locale X in 
93l is canonically isomorphic with a relative complete Boolean subalgebra 
Bx of ~(gY/). In particular, the Stonean spaces of  ~(X)  and Bx can be 
identified and are denoted by Ex. Thus the restriction of 05 to B x naturally 
induces a Borel measure cox on the Stonean space Ex of  ~(X).  We denote 
by LE(Ex, cox) the Hilbert space of  square-integrable complex-valued func- 
tions on =-x- By what is admittedly called Stone duality between Boolean 
algebras and Boolean spaces, the opposite ~ ( f )  of  each morphism f: X ~ Y 
in 9~/ induces a continuous function El: E x ~  Ev. It is not difficult to see 
that the assignment to each f e L Z ( E r ,  coy) o f f  o Ef gives rise to a contrac- 
tive linear mapping T, from L2(Ev, coy) to L2(2x,  cox). The totality of  
LZ(Ex, ~Ox)'S and Tt's for all Hilbert locales X and all morphisms f in ~0l 
gives a subcategory of  .~il, whose dual category is denoted by ~(gJt, co). It 
is easy to see the following. 
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Proposition 4.1..~(gJ~, co) is a completely coherent manual of  Hilbert 
locales. 

We denote by • co) the assignment to each object L2(Ex, COx) in 
.~(~J~, co) ~ of the constant function 1 on Ex. Then it is easy to see the 
following. 

Proposition 4.2. • ~o) is a normalized vector field on .~(gJ~, o)), so 
that it induces a state (o~(~,,o) on .~(gJ~, co). 

We denote by F ~  the functor on 9J~ such that F~(X)  ~ --=- LZ(~x, COx) 
for each Boolean locale X in ~ and F ~ ( f )  ~ = Tf for each morphism f in 
~ .  It is easy to see the following: 

Proposition 4.3. F~ is an orthocomplete morphism from the manual 
of  Boolean locales to the manual .5(93l, (o) of Hilbert locales, in which 

the states ~o and CO~(~,o~) are F~-related. 

Now we are ready to present our GNS theorem. 

Theorem 4.4. For any manual 91 of Hilbert locales with a vector field 
y on it and any orthocomplete morphism G from gJ~ to 9l in which CO and 
COy are G-related, there exists a unique isometric orthocomplete morphism 
(H, ~) from ~(ffJl, CO) to 91 abiding by the following conditions: 

(4.1) Vector fields • co) and ~ are (H, z)-related. 
(4.2) The following diagram is commutative: 

~ ~5(~, co) 

9l 

Outline of the Proof. The construction of the desired H is all but 
trivial, so that the major part of  the proof  consists in the construction of 
the desired ~. Note that for each Boolean locate 3[ in gJl, the space 
SL2(Ex, cox) consisting of all simple functions in L2(~,x, cox) is a dense 
linear subspace of L2(Ex, COx). Recall that a function is called simple if it 
takes only a finite number of values. If X = X ~  @ , ~ ' " ~ X n ,  then 
G(X) = G(X1) ~ , ~ ' "  �9 @~ G(X,). Let el . . . . .  e,  be complex numbers. If  
desired ~ exists, then the putative ~ (Zx)  should map a simple function 

~1 ZZx~ + " " " + ~nZ---x. on Ex 

to the vector 

elPae(o(x,))YG(X) +"  "" + e,P~tGtx,))Ya(x) of ~ ( G ( X ) )  

where ~x can canonically be identified with the topological sum of Ex~'S, 
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Z-Zx denotes the characteristic function of Ex~ for each i, JF(G(Xi) ) can 
canonically be identified with the orthogonal sum of ~(G(X)) ' s ,  and 
P~r162 denotes the orthogonal projection of ~(G(X))  onto ~r for 
each i. It is not difficult to see that this indeed defines an isometric linear 
mapping of SL2(Ex, COx) into oCF(G(X)), whose unique isometric linear 
extension to L2(Ex, o9x) should be taken as ~(Tx).  [] 

The long and the short of the above theorem is that our construct 
~(gJ/, 09) is universal in some reasonable sense of category theory 
(MacLane, 1971, Chapter III, w and that our vector field x(gJ/, o9) 
assumes the role of a cyclic vector in the conventional GNS construction. 

The orthogonal-sum construction in Example 3.4 gives the following 
embedding theorem. 

Theorem 4.5. If  9Jl admits a full set of states, then 931 admits as well 
a faithful orthocomplete morphism into a completely coherent manual of 
Hilbert locales. 

Outline of  the Proof. Take a family {o9~. }2eA of states on 992 such that 
for any nontrivial Boolean locale X in 9J~ there exists 2~A such that 
og;~(X) :~ 0. Take the orthogonal sum (~)~A "~(~, COZ) as the desired man- 
ual of Hilbert locales. It is not hard to see that the functor 

with 
co 2 ( = 

for each Boolean locale X in 9J/and 

( (~);.~A F,~')(f) = @);.~A r~ ' ( f )  

for each morphism f in ~ is indeed a desired morphism of manuals. [] 

N O T E S  A D D E D  IN P R O O F  

1. Example 3.3 turned out to be incorrect. 
2. In Section 4, to make Proposition 4.1 valid, it seems that we should 

assume that the state o9 is centrally supported. The state 09 is said to be 
centrally supported if the corresponding state ~5 on ~ ( ~ )  has a support and 
it belongs to the center of .~(~). 
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